Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 829
Filtrar
1.
Int J Med Sci ; 21(5): 862-873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617005

RESUMO

Background: Direct liver invasion (DI) is a predominant pathway of gallbladder cancer (GBC) metastasis, but the molecular alterations associated with DI remain addressed. This study identified specific genes correlated with DI, which may offer a potential biomarker for the diagnosis and prognosis of advanced GBC. Methods: RNA samples from 3 patients with DI of GBC were used for RNA-seq analysis. Differentially expressed genes and metabolic pathways between primary tumor (T) and DI tissue was used to analyze aberrant gene expressions. Immunohistochemistry (IHC) of fatty acid binding protein 1 (FABP1) in 62 patients with DI was engaged to evaluate its association with clinicopathological characteristics and prognosis. IHC of CD3+ and CD8+ T cells was analyzed for their correlation with FABP1 expression, clinicopathological features and prognosis. Univariate and multivariate Cox hazards regression analyses were performed to identify independent prognostic factors for disease-free survival (DFS) and overall survival (OS). Results: FABP1 mRNA levels were significantly upregulated in DI region compared to T tissue. IHC results showed identical results with elevated FABP1 (p < 0.0001). Expression of FABP1 in DI region was significantly associated with lymph node metastasis (P = 0.028), reduced DFS (P = 0.013) and OS (P = 0.022); in contrast, its expression in T region was not associated with clinicopathological characteristics and prognosis (P > 0.05). The density of CD8+ T cells in DI region with higher FABP1 expression was significantly lower than that with lower FABP1 expression (p = 0.0084). Multivariate analysis unveiled those hepatic metastatic nodules (HR = 3.35, 95%CI: 1.37-8.15, P = 0.008) and FABP1 expression in DI region (HR = 2.01, 95%CI: 1.05-3.88, P = 0.036) were high risk factors for OS, and FABP1(HR = 2.05, 95%CI: 1.04-4.06, P = 0.039) was also a high risk factor for DFS. Conclusions: Elevated expression of FABP1 in DI region serves as a potential prognostic biomarker for advanced GBC with DI.


Assuntos
Carcinoma in Situ , Carcinoma , Neoplasias da Vesícula Biliar , Humanos , Linfócitos T CD8-Positivos , Proteínas de Ligação a Ácido Graxo/genética , Neoplasias da Vesícula Biliar/genética , Fígado , Prognóstico
2.
Pathol Res Pract ; 256: 155233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452583

RESUMO

Gallbladder cancer (GBC) is a highly aggressive malignancy with limited treatment options and poor prognosis. In this study, we aimed to investigate the role of SIRT7, a member of the sirtuin family, in GBC and its potential as a prognostic marker and therapeutic target. Through immunohistochemistry analysis of GBC tissue samples, we observed elevated levels of SIRT7, which were correlated with worse clinicopathological parameters and shorter overall survival in GBC patients. Additionally, through cellular and animal experiments, we have discovered that interfering with SIRT7 can effectively suppress the proliferation, migration, and invasive capabilities of GBC cells. Conversely, overexpressing SIRT7 yields the opposite outcome. Furthermore, interference with SIRT7 triggers cell cycle arrest and enhances apoptosis in GBC cells. Mechanistically, we found that SIRT7 inhibition led to reduced activation of the NF-κB signaling pathway, suggesting its involvement in modulating GBC cell behavior. Our findings shed light on the oncogenic role of SIRT7 in GBC and highlight its potential as a promising prognostic marker and therapeutic target. Further research is warranted to explore the therapeutic implications of targeting SIRT7 in GBC treatment.


Assuntos
Neoplasias da Vesícula Biliar , Sirtuínas , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias da Vesícula Biliar/genética , Prognóstico , Transdução de Sinais , Sirtuínas/metabolismo
3.
Int J Biol Macromol ; 264(Pt 1): 130426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428766

RESUMO

Gallbladder cancer (GBC) is one of the most aggressive types of biliary tree cancers and the commonest despite its rarity. It is infrequently diagnosed at an early stage, further contributing to its poor prognosis and low survival rate. The lethal nature of the disease has underlined a crucial need to discern the underlying mechanisms of GBC carcinogenesis which are still largely unknown. However, with the continual evolution in the research of cancer biology and molecular genetics, studies have found that non-coding RNAs (ncRNAs) play an active role in the molecular pathophysiology of GBC development. Dysregulated long non-coding RNAs (lncRNAs) and their interaction with intracellular signaling pathways contribute to malignancy and disease development. LncRNAs, a subclass of ncRNAs with over 200 nucleotides, regulate gene expression at transcriptional, translational, and post-translational levels and especially as epigenetic modulators. Thus, their expression abnormalities have been linked to malignancy and therapeutic resistance. lnsRNAs have also been found in GBC patients' serum and tumor tissue biopsies, highlighting their potential as novel biomarkers and for targeted therapy. This review will examine the growing involvement of lncRNAs in GBC pathophysiology, including related signaling pathways and their wider clinical use.


Assuntos
Neoplasias da Vesícula Biliar , RNA Longo não Codificante , Humanos , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/patologia , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética , Transdução de Sinais/genética , RNA não Traduzido
4.
J Transl Med ; 22(1): 299, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519939

RESUMO

BACKGROUND: The progression of gallbladder cancer (GBC) is accompanied by abnormal fatty acid ß-oxidation (FAO) metabolism. Different types of lipids perform various biological functions. This study aimed to determine the role of acyl carnitines in the molecular mechanisms of GBC progression. METHODS: Distribution of lipids in GBC was described by LC-MS-based lipidomics. Cellular localization, expression level and full-length of lncBCL2L11 were detected using fluorescence in situ hybridization (FISH) assays, subcellular fractionation assay and 5' and 3' rapid amplification of the cDNA ends (RACE), respectively. In vitro and in vivo experiments were used to verify the biological function of lncBCL2L11 in GBC cells. Methylated RNA Immunoprecipitation (MeRIP) was performed to detect the methylation levels of lncBCL2L11. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were used to identify lncBCL2L11 interacting proteins. Co-Immunoprecipitation (Co-IP) and Western blot assay were performed to validate the regulatory mechanism of lncBCL2L11 and THO complex. RESULTS: Acylcarnitines were significantly up-regulated in GBC tissues. High serum triglycerides correlated to decreased survival in GBC patients and promoted tumor migration. LncBCL2L11 was identified in the joint analysis of highly metastatic cells and RNA sequencing data. LncBCl2L11 prevented the binding of THOC6 and THOC5 and causes the degradation of THOC5, thus promoting the accumulation of acylcarnitines in GBC cells, leading to the malignant progression of cancer cells. In addition, highly expressed acylcarnitines stabilized the expression of lncBCL2L11 through N6-methyladenosine methylation (m6A), forming a positive feedback regulation in tumor dissemination. CONCLUSIONS: LncBCL2L11 is involved in gallbladder cancer metastasis through FAO metabolism. High lipid intake is associated with poor prognosis of GBC. Therefore, targeting lncBCL2L11 and its pathway-related proteins or reducing lipid intake may be significant for the treatment of GBC patients.


Assuntos
Carnitina/análogos & derivados , Neoplasias da Vesícula Biliar , Humanos , Neoplasias da Vesícula Biliar/genética , Hibridização in Situ Fluorescente , RNA , Lipídeos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética
5.
Biochem Biophys Res Commun ; 705: 149724, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38432111

RESUMO

BACKGROUND: Although there are several studies in the development of various human cancers, the role of exosomes is poorly understood in the progression of gallbladder cancer. This study aims to characterize the metabolic changes occurring in exosomes obtained from patients with gallbladder cancer compared with those from other gallbladder disease groups. METHODS: Biliary exosomes were isolated from healthy donors (n = 3) and from patients with gallbladder cancer (n = 3), gallbladder polyps (n = 4), or cholecystitis (n = 3) using a validated exosome isolation kit. Afterward, we performed miRNA profiling and untargeted metabolomic analysis of the exosomes. The results were validated by integrating the results of the miRNA and metabolomic analyses. RESULTS: The gallbladder cancer group exhibited a significant reduction in the levels of multiple unsaturated phosphatidylethanolamines and phosphatidylcholines compared to the normal group, which resulted in the loss of exosome membrane integrity. Additionally, the gallbladder cancer group demonstrated significant overexpression of miR-181c and palmitic acid, and decreased levels of conjugated deoxycholic acid, all of which are strongly associated with the activation of the PI3K/AKT pathway. CONCLUSIONS: Our findings demonstrate that the contents of exosomes are disease-specific, particularly in gallbladder cancer, and that altered metabolites convey critical information regarding their phenotype. We believe that our metabolomic and miRNA profiling results may provide important insights into the development of gallbladder cancer.


Assuntos
Exossomos , Neoplasias da Vesícula Biliar , MicroRNAs , Humanos , Neoplasias da Vesícula Biliar/genética , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo
6.
J Cancer Res Ther ; 20(1): 289-296, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554336

RESUMO

PURPOSE: Majority of the gallbladder cancer (GBC) cases are diagnosed at an advanced stage where chemotherapy alone (or in combination with other treatment methods) is mainly opted as therapeutic approach. However, success or failure of this approach largely depends on the interindividual genetic differences. Careful consideration on the genetic association could assist in the evaluation of patient's treatment response and survival rate. Hence, the present study aims to investigate the survival of patients with GBC and their treatment response to gemcitabine and cisplatin/carboplatin-based chemotherapy in association with Glutathione S-transferase (GSTs) gene polymorphism. MATERIAL AND METHODS: A total of 216 histologically confirmed cases of gallbladder cancer were recruited. A total of 180 patients were treated with gemcitabine and cisplatin/carboplatin-based chemotherapy. GSTM1, GSTT1, and GSTP1 genotypes were determined by multiplex PCR and by PCR restriction fragment length polymorphism (PCR-RFLP), respectively. The influence of genetic polymorphism on overall survival was analyzed by Kaplan-Meier method, survival rate difference was analyzed by log-rank test, and hazard ratio for mortality outcomes was estimated using Cox regression method. RESULTS: GBC patients having genotype GSTP1 (AG + GG) showed poor 3-year survival rate of 0.8% compared to 10.9% of GSTP1 (AA) genotype (χ2 = 6.456, P = 0.011). The multivariate Cox regression results showed that the death risk was significantly higher in GSTP1 (AG + GG) genotype (HR = 3.858, P = 0.050). We found no association of GSTM1 and GSTT1 gene polymorphism with the survival; however, the combined genotypes of GSM1/GSTP1, GSTT1/GSTP1, and GSTM1/GSTT1/GSTP1 were associated with survival (P = 0.053, 0.006, and 0.058, respectively). Increased death hazard was noted by the genotype combinations of GSTM1+/GSTP1AG + GG (HR = 3.484, P = 0.024), GSTM1-/GSTP1AG + GG (HR = 2.721, P = 0.014), GSTT1+/GSTP1AG + GG (HR = 20.690, P = 0.001), and GSTT1-/GSTP1AA (HR = 26.111, P < 0.0001). Our findings indicate that chemotherapy treatment response of GSTP1 (AG + GG) has 1.62-fold increased risk for progression compared to GSTP1 (AA) genotype (p = 0.018); however, none of the genotypes showed association with overall survival and death risk after chemotherapeutic treatment. CONCLUSION: We found that the presence of GSTP1 (AG + GG) genotype showed survival disadvantage and poor treatment outcomes in response to gemcitabine and cisplatin/carboplatin-based chemotherapy. This could serve as biomarker, and future research in pharmacogenomics will definitely pave the way for the development of better treatment approach for GBC.


Assuntos
Cisplatino , Neoplasias da Vesícula Biliar , Humanos , Cisplatino/uso terapêutico , Carboplatina , Gencitabina , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/genética , Predisposição Genética para Doença , Polimorfismo Genético , Glutationa Transferase/genética , Glutationa S-Transferase pi/genética , Genótipo , Análise de Sobrevida , Resultado do Tratamento
7.
J Cancer Res Ther ; 20(1): 349-357, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554345

RESUMO

AIM: Gallbladder cancer (GBC) is usually diagnosed in advanced stages with poor survival. The molecular mechanisms of GBC still remain unexplored. Several angiogenesis factors play a pivotal role in tumor progression. We aimed to study the expression of VEGF, PDGF-B, and human epidermal growth factor receptor 2 (HER2/neu) and its association with clinicopathological features and survival in GBC. MATERIALS AND METHODS: VEGF, PDGF-B, and HER2/neu expression was studied by immunohistochemistry (IHC) after histological evaluation in 91 GBC cases. The relationship between these markers and clinicopathological features and survival was explained through the Cox regression model and Kaplan-Meier method. RESULTS: VEGF, PDGF-B, and HER2/neu overexpressed in 45, 79, and 68% GBC cases, respectively. VEGF was significantly overexpressed in GBC without gall stones (GS) (p = 0.007) and with moderately and poorly differentiated tumors (p = 0.012). HER2/neu was significantly overexpressed in GBC with GS (p = 0.022). Median overall survival (OS) was 39 months (95% CI: 23-55). In univariate analysis, histological type (adenocarcinoma and papillary) vs. others (signet ring/mucinous/adenosquamous) (p = 0.004), depth of tumor infiltration (p = 0.017), distant metastasis (p = 0.012), and adjuvant therapies (chemotherapy/radiotherapy) (p = 0.083) were associated with poor prognosis. Multivariate survival analysis showed histological type (p = 0.004) and distant metastasis (p = 0.032) to be independent prognostic factors for OS. Histological type (p = 0.002), distant metastasis (p = 0.003), and depth of tumor infiltration (T3-T4) (p = 0.012) showed poor median survival. Poor survival was seen in VEGF and HER2/neu positive cases. CONCLUSION: Overexpression of VEGF, PDGF-B, and HER2/neu might be possible prognostic biomarkers in GBC. Poor survival of VEGF and HER2/neu positive cases indicates the possibilities of using their blockers as therapeutic agents.


Assuntos
Neoplasias da Vesícula Biliar , Humanos , Prognóstico , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/terapia , Fator A de Crescimento do Endotélio Vascular , Estadiamento de Neoplasias , Metástase Linfática , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
8.
Mol Cancer ; 23(1): 65, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532427

RESUMO

BACKGROUND: Abnormal angiogenesis is crucial for gallbladder cancer (GBC) tumor growth and invasion, highlighting the importance of elucidating the mechanisms underlying this process. LncRNA (long non-coding RNA) is widely involved in the malignancy of GBC. However, conclusive evidence confirming the correlation between lncRNAs and angiogenesis in GBC is lacking. METHODS: LncRNA sequencing was performed to identify the differentially expressed lncRNAs. RT-qPCR, western blot, FISH, and immunofluorescence were used to measure TRPM2-AS and NOTCH1 signaling pathway expression in vitro. Mouse xenograft and lung metastasis models were used to evaluate the biological function of TRPM2-AS during angiogenesis in vivo. EDU, transwell, and tube formation assays were used to detect the angiogenic ability of HUVECs. RIP, RAP, RNA pull-down, dual-luciferase reporter system, and mass spectrometry were used to confirm the interaction between TRPM2-AS, IGF2BP2, NUMB, and PABPC1. RESULTS: TRPM2-AS was upregulated in GBC tissues and was closely related to angiogenesis and poor prognosis in patients with GBC. The high expression level and stability of TRPM2-AS benefited from m6A modification, which is recognized by IGF2BP2. In terms of exerting pro-angiogenic effects, TRPM2-AS loaded with exosomes transported from GBC cells to HUVECs enhanced PABPC1-mediated NUMB expression inhibition, ultimately promoting the activation of the NOTCH1 signaling pathway. PABPC1 inhibited NUMB mRNA expression through interacting with AGO2 and promoted miR-31-5p and miR-146a-5p-mediated the degradation of NUMB mRNA. The NOTCH signaling pathway inhibitor DAPT inhibited GBC tumor angiogenesis, and TRPM2-AS knockdown enhanced this effect. CONCLUSIONS: TRPM2-AS is a novel and promising biomarker for GBC angiogenesis that promotes angiogenesis by facilitating the activation of the NOTCH1 signaling pathway. Targeting TRPM2-AS opens further opportunities for future GBC treatments.


Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , MicroRNAs , RNA Longo não Codificante , Canais de Cátion TRPM , Humanos , Animais , Camundongos , Neoplasias da Vesícula Biliar/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Canais de Cátion TRPM/metabolismo , 60489 , Linhagem Celular Tumoral , Transdução de Sinais , RNA Mensageiro , Proliferação de Células , Receptor Notch1/metabolismo , Proteínas de Ligação a RNA/metabolismo
9.
Gene ; 913: 148372, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38499214

RESUMO

Gallbladder cancer (GBC) is a prevalent and deadly form of bile duct cancer, associated with poor prognosis. This study aimed to investigate the genetic factors contributing to the high incidence of GBC in certain geographical regions, particularly in the Northern and Eastern parts of India. The present case-control study focused on MMP2, a gene involved in tumor progression and metastasis, as a potential candidate in GBC pathogenesis. We scanned MMP2 promoter for twelve SNPs using Sanger's sequencing and carried out a case-control study in 300 cases and 300 control samples. We found five rare variants (rs1961998763, rs1961996235, rs1391392808, rs1488656253, and rs17859816) and one nonpolymorphic SNP (rs17859817). Our results revealed a significant association between GBC and MMP2 promoter SNPs, rs243865 (Allelic-Padjusted = 0.0353) and g.55477735G > A (Allelic-Padjusted = 9.22E-05). Moreover, the haplotype "C-C-A-C-C" exhibited a significant association with GBC (P = 4.23E-05). Genotype-phenotype correlation for variant rs243865, in the GBC patient tissue samples, established that 'T' risk allele carriers had higher expression levels of MMP2. Additionally, luciferase reporter assay in HEK293T cells revealed the probable regulatory role of rs243865 variant allele 'T' in MMP2 expression. Our study uncovers the association of MMP2 promoter SNPs with GBC and their role in regulating its expression.


Assuntos
Neoplasias da Vesícula Biliar , Humanos , Neoplasias da Vesícula Biliar/genética , Estudos de Casos e Controles , Metaloproteinase 2 da Matriz/genética , Células HEK293 , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
10.
Cancer Lett ; 587: 216703, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341127

RESUMO

Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.


Assuntos
Proteínas de Ligação a DNA , Neoplasias da Vesícula Biliar , Humanos , Proteínas de Ligação a DNA/genética , Neoplasias da Vesícula Biliar/genética , Fatores de Transcrição/genética , Splicing de RNA , Proliferação de Células , RNA Mensageiro/genética , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína 1 Homóloga a Discs-Large/genética , Proteína 1 Homóloga a Discs-Large/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
Cancer Lett ; 586: 216677, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301910

RESUMO

Gallbladder cancer (GBC) is a common solid tumor of the biliary tract with a high mortality rate and limited curative benefits from surgical resection. Here, we aimed to elucidate the pathogenesis of GBC from the perspective of molecular mechanisms and determined that protein phosphatase 4 regulator subunit 1 (PP4R1) is overexpressed in GBC tissues and contributes to poor prognosis. Through a series of in vitro and in vivo experiments, we demonstrated that PP4R1 overexpression improved tumorigenesis in GBC cells. Further mechanistic exploration revealed that PP4R1 directly interacts with pyruvate kinase-M2 (PKM2), a key regulator of glycolysis. PP4R1 promotes the extracellular signal-related kinase 1 and 2 (ERK1/2)-mediated PKM2 nuclear translocation, thereby participating in the regulation of tumor glycolysis. Interestingly, we determined that PP4R1 strengthens the interaction between ERK1/2 and PKM2. Furthermore, PP4R1 enhanced the suppressive effects of the ERK inhibitor SCH772984 on GBC. In conclusion, our data showed that PP4R1 is a promising biomarker associated with GBC and confirmed that PP4R1 regulates PKM2-mediated tumor glycolysis, which provides a metabolic growth advantage to GBC cells, thereby promoting GBC tumor growth and metastasis1.


Assuntos
Neoplasias da Vesícula Biliar , Humanos , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica , Glicólise , Sistema de Sinalização das MAP Quinases , Monoéster Fosfórico Hidrolases/metabolismo
12.
Adv Sci (Weinh) ; 11(16): e2308531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380551

RESUMO

Gallbladder cancer (GBC) is an extremely lethal malignancy with aggressive behaviors, including liver or distant metastasis; however, the underlying mechanisms driving the metastasis of GBC remain poorly understood. In this study, it is found that DNA methyltransferase DNMT3A is highly expressed in GBC tumor tissues compared to matched adjacent normal tissues. Clinicopathological analysis shows that DNMT3A is positively correlated with liver metastasis and poor overall survival outcomes in patients with GBC. Functional analysis confirms that DNMT3A promotes the metastasis of GBC cells in a manner dependent on its DNA methyltransferase activity. Mechanistically, DNMT3A interacts with and is recruited by YAP/TAZ to recognize and access the CpG island within the CDH1 promoter and generates hypermethylation of the CDH1 promoter, which leads to transcriptional silencing of CDH1 and accelerated epithelial-to-mesenchymal transition. Using tissue microarrays, the association between the expression of DNMT3A, YAP/TAZ, and CDH1 is confirmed, which affects the metastatic ability of GBC. These results reveal a novel mechanism through which DNMT3A recruitment by YAP/TAZ guides DNA methylation to drive GBC metastasis and provide insights into the treatment of GBC metastasis by targeting the functional connection between DNMT3A and YAP/TAZ.


Assuntos
Antígenos CD , Caderinas , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Neoplasias da Vesícula Biliar , Proteínas de Sinalização YAP , Humanos , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/patologia , DNA Metiltransferase 3A/metabolismo , DNA Metiltransferase 3A/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Feminino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Masculino , Linhagem Celular Tumoral , Animais , Metilação de DNA/genética , Metástase Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Pessoa de Meia-Idade , Transição Epitelial-Mesenquimal/genética , Modelos Animais de Doenças , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo
13.
Cell Biochem Funct ; 42(2): e3952, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343018

RESUMO

This study uncovered the potential clinical value and molecular driving mechanisms of circular RNAs (circRNAs) in gallbladder cancer (GBC). Differentially expressed circRNAs in GBC cells were screened by high-throughput sequencing. CircRNA_CDKN1A (circBase ID: hsa_circ_0076194) was knocked out in BGC-SD cells through transfection with sh-circRNA_CDKN1A. Then, proliferation was investigated via CCK8 and EdU assays, apoptosis via flow cytometry, migration via wound healing assays, and invasion via Transwell assays. Bioinformatics analysis of circRNA_CDKN1A-related signaling pathways was performed using MetScape and g:Profiler. Results showed that the knockdown of circRNA_CDKN1A enhanced the proliferation, migration, and invasion of GBC cells and inhibited apoptosis. In addition, knocking out circRNA_CDKN1A promoted GBC cell proliferation and enhanced the dry indices of the OCT4 protein and CD34 expression levels. The knockdown of circRNA_CDKN1A activated the epithelial-mesenchymal transition pathway. Bioinformatics analysis revealed that the biological role of circRNA_CDKN1A in GBC cells involved the NF-κB pathway. LY2409881, which is an NF-κB inhibitor, reversed the effects induced by the knockdown of circRNA_CDKN1A in GBC-SD cells. In summary, the knockdown of circRNA_CDKN1A promoted the progression of GBC by activating the NF-κB signaling pathway. For the first time, this study revealed the mechanism of circRNA_CDKN1A-mediated regulatory action in GBC and identified the newly discovered circRNA_CDKN1A-NF-κB signaling axis as a potentially important candidate for clinical therapy and prognostic diagnosis of GBC.


Assuntos
Neoplasias da Vesícula Biliar , MicroRNAs , Humanos , NF-kappa B/metabolismo , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Movimento Celular , MicroRNAs/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
14.
Cancer Lett ; 586: 216675, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280478

RESUMO

Gallbladder cancer (GBC) is among the most common malignancies of biliary tract system due to its limited treatments. The immunotherapeutic targets for T cells are appealing, however, heterogeneity of T cells hinds its further development. We systematically construct T cell atlas by single-cell RNA sequencing; and utilized the identified gene signatures of high_CNV_T cells to predict molecular subtyping towards personalized therapeutic treatments for GBC. We identified 12 T cell subtypes, where exhausted CD8+ T cells, activated/exhausted CD8+ T cells, and regulatory T cells were predominant in tumors. There appeared to be an inverse relationship between Th17 and Treg populations with Th17 levels significantly reduced, whereas Tregs were concomitantly increased. Furthermore, we first established subtyping criterion to identify three subtypes of GBC based on their pro-tumorigenic microenvironments, e.g., the type 1 group shows more M2 macrophages infiltration, while the type 2 group is infiltrated by highly exhausted CD8+ T cells, B cells and Tregs with suppressive activities. Our study provides valuable insights into T cell heterogeneity and suggests that molecular subtyping based on T cells might provide a potential immunotherapeutic strategy to improve GBC treatment.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias da Vesícula Biliar , Humanos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/terapia , Neoplasias da Vesícula Biliar/metabolismo , Linfócitos T Reguladores/patologia , Imunoterapia , Macrófagos/patologia , Microambiente Tumoral
15.
Clin J Gastroenterol ; 17(1): 164-169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882973

RESUMO

A 50-year-old man with a history of total gastrectomy, distal pancreatectomy, splenectomy, and Roux-en-Y reconstruction was admitted to our hospital with a gallbladder tumor that had infiltrated the liver and abdominal wall. Because malignant cells were not collected during the percutaneous biopsy, we planned to perform an endoscopic ultrasound-guided fine-needle biopsy with a 22-G Franseen needle using a forward-viewing echoendoscope. Using intermittent manual compression, the forward-viewing echoendoscope reached the duodenum under fluoroscopic guidance. Endoscopic ultrasound-guided fine-needle biopsy was performed using a 22-G needle and 20-mL syringe and yielded a sufficient specimen with a single puncture. Malignant cells were promptly identified during on-site evaluation. The composition of the specimen (> 20% cancer cells and tissue area exceeding 25 mm2) enabled comprehensive genomic profiling. Subsequently, high-tumor mutational burden was diagnosed based on comprehensive genomic profiling, and pembrolizumab was initiated as a second-line therapy. Even in cases involving Roux-en-Y reconstruction, endoscopic ultrasound-guided fine-needle biopsy using a forward-viewing echoendoscope can result in collection of a high-quality specimen.


Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias da Vesícula Biliar/diagnóstico por imagem , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/cirurgia , Endossonografia , Duodeno , Gastrectomia , Genômica , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico
16.
Environ Toxicol ; 39(2): 708-722, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37665156

RESUMO

BACKGROUND: Gallbladder cancer (GBC), a highly malignant gastrointestinal tumor, lacks effective therapies. Foxhead box A2 (FOXA2) is a tumor suppressor that is poorly expressed in various human malignancies. This study aimed to ascertain FOXA2 expression in GBC and its relevance to tumor metastasis, and to elucidate its regulatory mechanism with epithelial-mesenchymal transition (EMT) as an entry point, in the hope of providing a potential therapeutic target for GBC. METHODS: FOXA2 expression in GBC tissues was first detected using immunohistochemistry (IHC), followed by correlation analysis with clinicopathological characteristics and survival prognosis. Subsequently, the effects of FOXA2 on GBC cell migration and invasion, as well as EMT induction, were evaluated by scratch, Transwell, RT-PCR, and Western blot assays, together with animal experimentation. Ultimately, mRNA sequencing was carried out to identify the key downstream target genes of FOXA2 in controlling the EMT process in GBC cells, and dual-luciferase reporter and chromatin immunoprecipitation assays were used to determine its regulatory mechanism. RESULTS: FOXA2 was underexpressed in GBC tissues and inversely correlated with tumor node metastasis stage, lymph node metastasis, and poor patient prognosis. FOXA2 exerts suppressive effects on EMT and metastasis of GBC in vivo and in vitro. FOXA2 can impede GBC cell migratory and invasive functions and EMT by positively mediating serine protein kinase inhibitor B5 (SERPINB5) expression. CONCLUSION: FOXA2 directly binds to the SERPINB5 promoter region to stimulate its transcription, thereby modulating the migration and invasion behaviors of GBC cells as well as the EMT process, which might be an effective therapeutic target against GBC.


Assuntos
Neoplasias da Vesícula Biliar , Animais , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Regulação Neoplásica da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
17.
Lab Invest ; 104(2): 100301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38092180

RESUMO

Mutation detection for therapy monitoring in cell-free DNA (cfDNA) is used clinically for some malignancies. Gallbladder carcinoma (GBC) presents a diagnostic challenge and has limited late-stage treatment options. To our knowledge, this novel study examines, for the first time, genomic alterations in cfDNA from GBC to assess diagnostic accuracy and therapeutic options. The concordance of somatic genomic changes in cfDNA and DNA from paired tumor tissue was analyzed. Paired serum and tissue samples from 40 histologically proven GBC, 20 cholecystitis, and 4 normal (noninflamed gallbladder) controls were included. Targeted next-generation sequencing with a 22-gene panel (Colon and Lung Cancer Research Panel v2, Thermo Scientific) in cfDNA and tumor tissue with high depth and uniform coverage on ION Personal Genome Machine (ION, PGM) was performed. A spectrum of 223 mutations in cfDNA and 225 mutations in formalin-fixed paraffin-embedded tissue DNA were identified in 22 genes. Mutations ranged from 1 to 17 per case. In cfDNA frequent alterations were in TP53 (85.0%), EGFR (52.5%), MET (35%) CTNNB1, SMAD4, BRAF (32.5%), PTEN (30%), FGFR3 and PIK3CA (27.5%), NOTCH1 (25.0%), and FBXW7 and ERBB4 (22.5%). At least one clinically actionable mutation was identified in all cfDNA samples. Paired samples shared 149 of 225 genetic abnormalities (66.2%). Individual gene mutation concordance ranged from 44.44% to 82.0% and was highest for EGFR (82.0%), BRAF and NOTCH1 (80.0%), TP53 (73.08%), MET (72.22%), and ERBB4 (71.42%) with a significant level of correlation (Spearman r = 0.91, P ≤ .0001). The sensitivity and specificity of the TP53 gene at the gene level was the highest (94.44% and 100.0%, respectively). Overall survival was higher for ERBB4 and ERBB2 mutant tumors. The adenocarcinoma subtype revealed specific genetic changes in ERBB4, SMAD4, ERBB2, PTEN, KRAS, and NRAS. NGS-based cfDNA mutation profiling can be used to diagnose GBC before surgery to guide treatment decisions. Targeted therapy identified in GBC included SMAD4, ERBB2, ERBB4, EGFR, KRAS, BRAF, PIK3CA, MET, and NRAS.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Vesícula Biliar , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias da Vesícula Biliar/diagnóstico , Neoplasias da Vesícula Biliar/genética , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Sequenciamento de Nucleotídeos em Larga Escala , Classe I de Fosfatidilinositol 3-Quinases
18.
Dig Dis Sci ; 69(2): 463-475, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087129

RESUMO

BACKGROUND: Gallbladder cancer (GBC) remains a serious cause of cancer-related mortality across the globe. E2F5 has been identified to as a known oncogene in various cancers. However, the special functions of E2F5 have not been investigated in GBC. AIMS: To explore the regulatory functions of E2F5 and its related molecular regulatory mechanism in GBC progression. METHODS: The expression of genes were examined through qRT-PCR, western blot and IHC assay. The cell proliferation was assessed through CCK-8 and EDU assays. The cytotoxicity was tested through LDH assay. The percentage of CD8+ T cells and cell apoptosis were evaluated through flow cytometry. The binding ability was detected through luciferase reporter assay. The tumor growth was assessed through in vivo assays. RESULTS: In this study, it was demonstrated that E2F5 expression was evaluated in GBC, and resulted into poor prognosis. Bioinformatics analysis revealed E2F5 as a target for let-7d-5p, which when overexpressed, suppressed the metastasis and proliferation of GBC through the downregulation of E2F5. It was discovered that E2F5 activates JAK2/STAT3 signaling which is suppressed by let-7d-5p, implicating this pathway as one of the effectors of the oncogenic effects of ESF5 in GBC. E2F5 had been confirmed to aggravate tumor growth in vivo. CONCLUSION: E2F5 targeted by let-7d-5p facilitated cell proliferation, metastasis and immune escape in GBC through the JAK2/STAT3 pathway.


Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , MicroRNAs , Humanos , Neoplasias da Vesícula Biliar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição E2F5/genética , Fator de Transcrição E2F5/metabolismo
19.
Int J Oncol ; 64(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099359

RESUMO

Due to the lack of specific symptoms, characteristic diagnostic markers and effective comprehensive treatment, gallbladder cancer (GBC) is currently considered one of the most malignant abdominal tumors. With the rapid development of biological technologies, long non­coding RNAs (lncRNAs), once regarded as transcriptional junk, have been demonstrated to participate in almost the whole process of the central dogma of molecular biology. The central dogma deals with the transfer of sequential information at the level of individual residues. LncRNAs have an effect on multiple cancer types. However, evidence of dysregulated lncRNA functions in GBC is limited. In the present review, the regulatory mechanisms of lncRNA function on gene expression were examined, including epigenetic modification, transcriptional regulation and post­translational modulation. These mechanisms are strongly associated with tumor development and metastasis. Next, it was summarized how lncRNAs affect GBC diverse malignant phenotypes through various mechanisms. Moreover, predictions of lncRNA interactions with other functional molecules in malignancies were made using several valuable databases, including crosstalk between lncRNA and DNA, mRNA, microRNA, and protein. Additionally, several potential therapeutic methods targeting pathological lncRNAs in tumors were identified. Finally, perspectives about lncRNA research and applications in GBC were presented in the current study, including viewpoints of coding potential of lncRNAs and feasible usage of micropeptides encoded by lncRNAs; roles of lncRNAs in tumor cell metabolic reprogramming and tumor microenvironment; and function of lncRNAs as possible biomarkers and therapeutic targets for improving GBC diagnosis, treatment and prognosis.


Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/terapia , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Prognóstico , Microambiente Tumoral
20.
Dig Dis Sci ; 69(2): 502-509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135812

RESUMO

BACKGROUND: Promoter hypermethylation of tumor suppressor genes has been demonstrated to be one of the major mechanisms of their epigenetic regulation in various reports. We have studied the promoter methylation status of PEBP1 and evaluated its correlation with gallbladder carcinogenesis. AIMS: PEBP1, an endogenous inhibitor of Raf/MEK/ERK signaling pathway, is a tumor suppressor gene. We aimed to study the expression profile of PEBP1 and understand the mechanism and significance of its deregulation in gallbladder cancer. METHODS: PEBP1 expression analysis and its promoter methylation status were investigated in 77 gallbladder carcinoma (GBC) and tissue biopsies from 28 patients of gallstone disease by RT-PCR and MS-PCR, respectively. RESULTS: Our results of the mRNA expression profiling demonstrate that PEBP1 is down-regulated in 62.3% (48/77), while 31.2% (24/77) of the gallbladder cancer biopsies show no significant change and 6.5% (5/77) show up-regulated expression compared to tissue samples of gallstone diseases. In GBC, 48.1% (N = 37) GBC biopsy samples exhibited significantly heterozygous promoter hypermethylation compared to tissue samples from gallstone diseases which show promoter hypermethylation in 3 (10.7%) samples only. In gallbladder cancer, the PEBP1 methylation is significantly associated with lymph node metastasis and shorter period of survival. CONCLUSION: PEBP1 is frequently down-regulated and hypermethylated in gallbladder cancer and its promoter hypermethylation is a frequent and early inactivating mechanism in GBC.


Assuntos
Carcinoma in Situ , Colelitíase , Neoplasias da Vesícula Biliar , Humanos , Relevância Clínica , Metilação de DNA , Epigênese Genética , Neoplasias da Vesícula Biliar/genética , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a Fosfatidiletanolamina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...